Disrupting prefrontal cortex prevents performance gains from sensory-motor training.

نویسندگان

  • Hannah L Filmer
  • Jason B Mattingley
  • René Marois
  • Paul E Dux
چکیده

Humans show large and reliable performance impairments when required to make more than one simple decision simultaneously. Such multitasking costs are thought to largely reflect capacity limits in response selection (Welford, 1952; Pashler, 1984, 1994), the information processing stage at which sensory input is mapped to a motor response. Neuroimaging has implicated the left posterior lateral prefrontal cortex (pLPFC) as a key neural substrate of response selection (Dux et al., 2006, 2009; Ivanoff et al., 2009). For example, activity in left pLPFC tracks improvements in response selection efficiency typically observed following training (Dux et al., 2009). To date, however, there has been no causal evidence that pLPFC contributes directly to sensory-motor training effects, or the operations through which training occurs. Moreover, the left hemisphere lateralization of this operation remains controversial (Jiang and Kanwisher, 2003; Sigman and Dehaene, 2008; Verbruggen et al., 2010). We used anodal (excitatory), cathodal (inhibitory), and sham transcranial direct current stimulation (tDCS) to left and right pLPFC and measured participants' performance on high and low response selection load tasks after different amounts of training. Both anodal and cathodal stimulation of the left pLPFC disrupted training effects for the high load condition relative to sham. No disruption was found for the low load and right pLPFC stimulation conditions. The findings implicate the left pLPFC in both response selection and training effects. They also suggest that training improves response selection efficiency by fine-tuning activity in pLPFC relating to sensory-motor translations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes in brain activation during the acquisition of a multifrequency bimanual coordination task: from the cognitive stage to advanced levels of automaticity.

Little is known about activation changes reflecting overlearning, i.e., extensive motor training beyond asymptotic performance. Here we used functional magnetic resonance imaging to trace the neural shifts from an initial to a skilled (learning) and finally overlearned stage (automatization). Scanning occurred before training (PRE) and after 1 (MID) and 2 weeks (POST) of intensive practice on a...

متن کامل

Reward-Based Learning Drives Rapid Sensory Signals in Medial Prefrontal Cortex and Dorsal Hippocampus Necessary for Goal-Directed Behavior

The neural circuits underlying learning and execution of goal-directed behaviors remain to be determined. Here, through electrophysiological recordings, we investigated fast sensory processing across multiple cortical areas as mice learned to lick a reward spout in response to a brief deflection of a single whisker. Sensory-evoked signals were absent from medial prefrontal cortex and dorsal hip...

متن کامل

Interaction between Hippocampal and Striatal Systems Predicts Subsequent Consolidation of Motor Sequence Memory

The development of fast and reproducible motor behavior is a crucial human capacity. The aim of the present study was to address the relationship between the implementation of consistent behavior during initial training on a sequential motor task (the Finger Tapping Task) and subsequent sleep-dependent motor sequence memory consolidation, using functional magnetic resonance imaging (fMRI) and t...

متن کامل

Synchronized activity in prefrontal cortex during anticipation of visuomotor processing.

It is commonly presumed, though not well established, that the prefrontal cortex exerts top-down control of sensory processing. One aspect of this control is thought to be a facilitation of sensory pathways in anticipation of such processing. To investigate the possible involvement of prefrontal cortex in anticipatory top-down control, we studied the statistical relations between prefrontal act...

متن کامل

Can ovariectomy and learning affect prefrontal cortex GABAAα1 receptor distribution in passive avoidance model in rats?

Introduction: The interaction between steroid hormones and neurotransmitters such as GABA has been proved. The regulation of muscimol binding to high-affinity GABAA receptors by estradiol and progesterone has been studied within distinct brain regions using in vitro quantitative autoradiography. There are few studies about the mechanism of the effect of steroid hormones on behaviors such as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 33 47  شماره 

صفحات  -

تاریخ انتشار 2013